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Abstract

Studying the dynamics of COVID-19 is of paramount importance to understand-
ing the efficiency of restrictive measures and develop strategies to defend against
up-coming contagion waves. We study the spread of COVID-19 using a semi-
supervised neural network and assuming a passive part of the population remains
isolated from the virus dynamics. An unsupervised neural network that learns
solutions of differential equations for different modeling parameters and initial
conditions. A supervised method then solves the inverse problem by estimating
the optimal conditions that generate functions to fit the data for those infected
by, recovered from, and deceased due to COVID-19. This semi-supervised ap-
proach incorporates real data to determine the evolution of the spread, the passive
population, and the basic reproduction number for different countries.

Methodology

•Unsupervised part: data-free NN trained to discover solutions for a DE sys-
tem in a high-dimensional parametric space made of modeling-parameters and
initial conditions [4].

• Supervised part: employs a gradient descent optimization method to deter-
mine the model parameters and initial conditions that best describe ground
truth observations using automatic differentiation.

•Parametrization: Impose the initial conditions z0 in the predictions ẑ. [5].

dz

dt
= g (z) , with z(t = 0) = z0, (1)

ẑ = z0 + f (t) (zNN − z0) , where f (t) = 1− e−t (2)

Fig. 1: Semi-supervised neural network architecture. Red and blue indicate, respectively, the unsupervised and

supervised learning parts.

• SIR model: Assess the performance of the proposed method by studying the
simple SIR model with a loss function [2, 3]
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SIR Analysis

•Network architecture: 4 hidden layers with 50 neurons per hidden layer.
Trained for for 2 · 104 epochs with Adam optimizer with learning rate 8 · 10−4.

•Network optimization: Training loss function for two different architectures

Fig. 2: Training with softmax (green) and identity (red) activation functions in the last layer. The oscillations in the curve are

due to the perturbation applied to the training points, and it is visually amplified by logarithmic scale of the y-axis.

•Error analysis: Smaller validation loss reached inside the training bundle (dashed box)
and gradually increases moving out.

Fig. 3: Validation loss of the model in different areas, as a function (a) of the initial conditions, and (b) of the parameters. The

area in the black dashed-line boxes is the training bundles regime.
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COVID-19: Real data

• SIRP: Consider a passive compartment P isolated from the dynamics.

N = S + I + R + P (4)
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• Train the model in the lockdown period for each country, assuming constant
modeling parameters [1].

Country I0 R0 P0 β γ

Switzerland [0.01, 0.02] [0.001, 0.006] [0.9, 0.97] [0.7, 0.9] [0.15, 0.3]

Spain [0.01, 0.02] [0.004, 0.009] [0.9, 0.97] [0.4, 0.6] [0.1, 0.2]

Italy [0.01, 0.02] [0.001, 0.006] [0.9, 0.97] [0.4, 0.6] [0.1, 0.2]
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Fig. 4: Infected and removed populations for Switzerland (left column), Spain (middle), Italy (right). Points

indicate data, solid lines denote predictions, dashed lines show the end of lockdown.

Conclusions

• Epidemiology-informed network incorporates real data to study the COVID-19
spread in Switzerland, Spain, and Italy.

• Semi-supervised neural networks solve inverse problems formulated by DEs.

• Learning a family of solutions for nonlinear systems.

• Solving the inverse problem determines modeling parameters yielding pre-
dicted solutions that best fit the data.

• SIRP model captures the dynamics of COVID-19 spread.


