
Politecnico di Milano

Distributed Systems

Questions
a.a. 2018-2019

Author
Tommaso Scarlatti

Reviewer
Emanuele Chioso

December 26, 2018

Contents

1 Disclaimer 2

2 Modeling 3

3 Communication 5

4 Naming 8

5 Consistency and Replication 10

6 Synchronization 14

7 Peer to Peer 19

8 Fault tolerance 22

9 Big Data 26

10 Security 28

1

1 Disclaimer

This is unofficial material. These are possible answers to the questions of the exams of
the Distributed Systems course in Politecnico di Milano. The main idea is to use these
questions as a support while studying the slides provided by the professor. Feel yourself
free to use and enhance these questions.

2

2 Modeling

(3) Describe the mobile code architectural style and the type of
technologies that support them.

Mobile code is an architectural style based on the ability of relocating components of an
application at run-time. With components here we mean code or both code and state of
the execution. There are different models depending on the original and final position of
resources:

• Remote evaluation: site A sends a request to site B and attach its code. Site B
then process the data using the received code and send it back to site A.

• Code on demand: site A has data and requests to site B the code and once
received it executes it. A concrete example is JavaScript executed in the web
browser.

• Mobile agent: agent A migrates to site B bringing both the code and the compu-
tational resources. Once arrived, it continues executing the code.

CREST(Computational REST) joins together the concepts of REST with mobile code.

We can differentiate between two types of mobility: strong mobility is the ability of
a system to allow migration of both the code and the execution state of an executing
unit to a different computational environment, weak mobility instead allows only code
movement across different computational environments.

This architectural model provides great flexibility to programmers since new services/-
components can be easily added or modified at run-time without stopping the application.
The main drawback is that securing mobile code application is really hard.

(2) Describe and compare the data-centered (Linda) model of
communication with the event-based one.

This type of architecture is data-sharing based, and access to the repository (which is
passive) is usually synchronized. We have several clients which communicate with the
repository through RPC. Linda is a clear example of a data-centered model: data is con-
tained in tuples which are stored in a persistent, global shared space. Workers (clients)
can insert, delete or read a copy of tuples with the following primitives: out(t), rd(p),
in(p).

In the event-based model components collaborate by exchanging information about oc-
currences of events using two different primitives:

• Publish: a notification of an event they observe

• Subscribe: to events they are interested to be notified

The communication of this paradigm is purely message based, asynchronous and multi-
cast.

3

Describe the service oriented architecture in general and the Web
Service technology as an example of its application.

Service oriented architecture is one of the possible architectural sytle for distributed
systems. It is built around the central concept of service, which represents loosely coupled
units of funciontality. In this architecture there are three main components:

• Providers: export services

• Consumers: search for a certain service, invokes the Broker that eventually replies
with the information regarding service.

• Brokers: keep a list of active providers and the description of the available services
related to them, in order to be reached from interested consumers.

The process of invoking a set of services is known as orchestration.

A well known example of the service oriented architecture are Web Services, which is
a software specifically designed to guarantee interoperable machine-to-machine interac-
tion over a network. Different software systems often need to exchange data with each
other, and a webservice is a method of communication that allows two software systems
to exchange this data over the internet. Different software may use different programming
languages, and hence there is a need for a method of data exchange that doesnt depend
upon a particular programming language: XML. Interfaces are described using WSDL
and web service operations are invoked using the SOAP protocol.

4

3 Communication

Describe Remote Procedure Call in general and the various ar-
chitectural issue that characterize this model of communication
(parameter passing, client/server binding, synchrony...).

Remote Procedure Call (RPC) is the remotely execution of a procedure on a separate
machine. When the linker assembles code, in case it is an RPC it substitutes the call with
a client stub version. Differently from a local call data is then packed up in a message
and there is a system call to a send primitive to send the message to the server. Then
the client stub call the procedure receive and starts waiting for the response. When the
message reaches the server, the server stub transforms the code of the RPC in a local
procedure call which is executed and sent back.

There are many issue with this communication paradigm. Firstly, parameter pass-
ing become hardly due to possibly structured data (which must be ultimately flattend)
and different data representation across machines. For both of this problems middleware
provides automated support with serialization and marshaling leveraging on a platform
independent language to represent the procedure’s signature: IDL. IDL raises the level
of abstraction of the service definition, separating the interface from its implementation.

Binding the client to the server is another issue. Find which server host a service and
where the server is located and how to establish a connection with it. Sun’s RPC uses
a portmap deamon that binds calls to server ports. The client contact directly portmap
that gives back the service identifier and the available port. (This approach solves only
the second problem, i.e. the client must know where the server resides. However it can use
multicast query to multiple deamons). DCE’s solution instead leverages on a directory
server which can be contacted by the client. In this way the client must be only aware
of where the directory server is located. DCE can also be distributed to ensure scalability.

Communication paradigm can be either synchronous (the caller is suspended until the
callee is done) or asynchronous (with many variations depending on if the caller needs
a result back). For instance, the client might be blocked waiting for acceptance from the
server instead of result.

RPC can be even be batched. It means that if a sequence of RPCs do not require
a result back, they are buffered on the client and then sent together to the server just
once.

Describe and compare RPC and RMI (as general communication
abstractions). Clarify the differences regarding the way parame-
ters are handled. In particular, explain why passing by reference
is problematic for RPC, how RMI addresses these difficulties,
and why, viceversa, passing by value is a problem for RMI.

Remote Procedure Call (RPC) is the remotely execution of a procedure on a separate
machine (see previous answer). RMI (Remote Method Invocation) is similar to RPC

5

since it shares with it the core concepts and mechanisms, but it also tries to take advan-
tage of the OOP in a distributed setting. Sometimes we can even find RMI built on top
of an RPC layer.

The main difference is that object reference in RMI can be passed around nodes in the
distributed system. IDL in RPC separates interface from implementation of procedures,
in RMI, following the basic OO principle, we can separate interface and implementation
on two different machines. Basically, we can have the object interface on one host and
the implementation on another.

In practice, there are two implementations of RMI which are Java RMI and OMG Corba.
The former is single-language/single-platform, the latter is multi-language/multi-plaform.
Let’s see how they handle parameter passing:

• In Java RMI, the difference between passing by reference or by copy depends on
how the parameters of the method that we are invoking are labeled: if labeled
as ”serializable”, then the objects are serialized and passed by copy. Thus, is
retrieved on the client as a different object and every modification has no effect on
the original instance. If is labeled as ”remote”, the object is passed by reference.
What happened is that if the client invokes one of the server methods and passes
an object as remote object, what the server gets is a reference that goes back to
the client machine and when the server invokes methods on this object, it invokes
code of this method the client machine.

• OMG Corba is multilanguage and multiplatform and therefore we cannot make the
assumption that the object that we see by copy runs on the same platform of the
sender. Thus, passing by copy is not admitted. The last version allows to pass
by copy but only in the case both sender and receiver are written in Java e run in
a Java Virtual Machine.

(2) Describe publish/subscribe in details discussing the various
alternatives for the subscription language, then describe and
compare the various approaches to implement a distributed (acyclic)
dispatcher.

Publish/Subscribe is a form of message oriented communication. It offers a multicast
and transient communication (the opposite of the message queuing paradigm, which is
point-to-point and persistent) and a high degree of decoupling among components. Ap-
plication components can interact with two simple primitives: publish and subscribe.

A central component in this architecture is the event dispatcher which is responsible
for collecting all the subscriptions and for routing events to all the matching subscribers.
The event dispatcher can be either centralized or distributed for scaling reasons. In the
second case, usually dispatchers (message brokers) are organized in an overlay network
which can be cyclic or acyclic.

The expressiveness of the subscription language plays an important role in the pub-
lish/subscribe architecture. There are two different types:

6

• Subject-based: (topic-based) when you subscribe you simple specify the name of the
topic. And when you publish your message on a specific topic. It’s a kind of group
organization.

• Content-based: subscriptions contain expressions (event filters) that allow clients
to filter events based on their content. The set of filters is determined by client
subscriptions.

In a network of dispatcher without cycles, each client attaches one of the brokers and
the various brokers are attached to each other forming an acyclic graph. There are three
different approaches in this case:

• Message Forwarding : every broker stores only submissions from directly attached
clients. Messages are then forwared from brokers and delivered to clients only if
they are subscribed. (Optimized for many subscriptions since they don’t flood the
network)

• Subscription Forwarding : subscriptions are forwareded to all the brokers, but are
never sent twice over the same link. Messages follow routes defined by subscriptions.

• Hierarchical Forwarding : messages and subscriptions are forwared to the root of
the tree and flows downwards only if a matching subscription have been received
along that route.

Describe the stream-oriented communication model and the var-
ious approaches to address the QoS issue.

In some contexts, data is organized in streams, which are sequences of data unit (e.g.
text, audio, video...). There are cases in which time impacts only the performance and
not the correctness of the application, for instance when we are interested only in the
processing of data. In real-time applications, instead, time determines also correctness.

With QoS (Quality of Service) we usually express non functional requirements such as:
required bit rate, maximum delay, maximum jitter... How can we gurantee QoS? IP
is a best-effort protocol, so it doesnt offer any mechanism to control the quality of the
connection. Actually it offers a differentiated services field into the header called Type of
Service (TOS) which is usually discareded by routers. Therefore we need to enforce QoS
at the application layer. At the application layer you cannot guarantee a certain level
of performance but you can do something to increase the chances of reaching that level
of performance. Let’s have a look at three main techniques:

• Buffering: it is a way to control max jitter by sacrificing session setup time. Packets
are not instantly delivered to the receiver, first they are stored in a buffer and then
they can arrive at the destination.

• Forward error correction: if a packet is corrupted, instead of asking the packet
again, we can employ the forwarding error correction mechanism that allows to
detect and correct errors adding information to a packet such that even if the
packet gets corrupted or lost we can still rebuild it.

• Interleaving: instead of sending packets that include consecutive frames you send
packets that mix together different frames and you are also buffering them.

7

4 Naming

(4) Describe the problem of removing unreferenced entities in a
distributed system and possible solutions to such problem.

Naming provide a global referencing service. The problem here is: how do you discover
that there are entities that are no more reachable? In conventional system the common
approach is to use a garbage collector. In a distributed setting we have a lack of global
knowledge about whos using what, and to network failures. Several techniques have been
developed to deal with this problem:

• Reference Counting: the object keeps track (with a counter) of how many other
objects have been given references. Passing references between proceses may lead
to a race condition. We can use an acknowledgment message, but it doesn’t scale
well. A possible solution to avoid race condition is to use an additional counter and
to communicate only counter decrements. The object keeps a global and a partial
counter. Every time a process references the object, the partial counter is halved.
When partial = global the object is removed. This approach is called Weighted
Reference Counting.

• Reference Listing: the idea here is different. Instead of keeping track of the num-
ber of references, keep track of the identities of who is referencing. We have the
advantage that insertion and deletion in the list are idempotent operations and it’s
easier to maintain the list consistent with respect to network failures. It still suffers
from race conditions when copying references.

• Distributed Mark & Sweep: it is useful to detect entities disconnected from the root
set. Initially all nodes are marked white and then they are colored in sequence if
they are reachable from the root. At the end of the process the white marked nodes
are collected and deleted.

(2) Describe structured naming in general and DNS in particular.

In a structured naming system names are organized in a so called name space. Name
space is a labeled graph with two possible types of nodes: directory nodes or leaf nodes. A
leaf node stores the name of an entity. Resources are referred through path names which
can be either absolute or relative. For scalability reasons, the name space is usually
distributed over multiple name servers and it is partitioned into different layers: global,
adiministrational, managerial.

DNS (Domain Name System) is a clear example of a structured name system. It trans-
lates more readily memorized domain names to the numerical IP addresses needed for
locating and identifying computer services. Name space is hierarchically organized as a
rooted tree and each subtree represents a ”domain” and belongs to a separate authority
and each name server is responsible for a particular zone. The resolution process can be:

• Iterative: the client contacts the root server at first which solves its portion of the
name. In this approach each DNS server doesnt resolve the entire name but gives
back only partial results. The client must ask several time to different name servers
to solve the entire name.

8

• Recursive: the client contacts the root and the root name server returns back the
entire name, by performing directly the resolution: the root name server solves the
entire name.

In practice, a mixture of the two approaches is used. Caching and replication are largely
used too, using IP anycast in the global name servers to forward requests to every replica.

Describe and compare the various approaches you know to im-
plement name resolution in flat naming.

In flat naming schema names are just ”flat”, meaning that they are simple strings with
neither structure nor content. There are several approaches to perform name resolution
in this context:

• Simple approaches: these approaches are implemented leveraging on broadcast
channels (like ARP resolution) or multicast (to reduce the number of nodes con-
tacted). In the case of mobile nodes, we can use forward pointers: nodes leave
references of their next location in their previous location.

• Home-based approaches: here we have one stable home node that knows the location
of the mobile node (can be replicated for stability). There are some drawbacks:
home node must be always available and is fixed, leading to poor geographical
scalability.

• DHT (Distributed Hash Table): nodes are organized in a structured overlay network
which can have different topologies. The lookup is performed through the table
which contains key-value pairs and it is distributed across the different nodes. Chord
is an implementation of the DHT approach which relies on the fact that nodes and
keys are organized in a logical ring.

• Hierarchical approaches: in this approach nodes are organized hierarchically in a
tree structure. The root has entries for every entity and an entry point to the next
subdomain. Leaves contain the address of an entity (in that domain). Lookup
usually starts where the client resides and is propagated up until an entry is found.
With this technique we can exploit locality, but there is a drawback: root must
contain information of all entities.

9

5 Consistency and Replication

(2) Describe all the types of synchronization variables belonging
to the different consistency models, with pros and cons for each
type.

One of the problem is that the pointing time in which the synchronization takes place
is not defined by the developer, he doesnt inform the system about the places in which
consistency is required. A possibility is to give some predicates to the developer or to
the compiler to specify when the synchronization must be enforced. So the following
consistency models rely on synchronization variables:

• Weak consistency: it uses only one synchronization variable S and access to syn-
chronization variable is sequentially consistent: everybody agrees on the order in
which the synchronization variable is invoked. The problem with Weak consis-
tency is that we have a single predicate to represent two things: sending my writes
to everybody and synchronizing, hence obtaining the latest value. This leads to
unnecessary overhead.

• Release consistency: it introduces different synchronization operations: Acquire to
indicate that a critical region is about to be entered and Release to indicate that a
critical region has just been exited. Again we have primitives and synchronization
takes place only when the programmer invokes these primitives. There are two
flavours of this approach: Eager, which means that on release all updates are pushed
to all the replicas, and Lazy, which implies that on release nothing is sent but during
acquire phase process must get the latest version.

• Entry consistency: explicitly associates each shared data item with a synchroniza-
tion variable. It improves parallelism, enabling simultaneous access to multiple crit-
ical sections and it reduces updates overhead. On the other hand, access complexity
is increased. There are two ways to access a synchronization variable: exclusive or
non-exclusive mode.

Describe the client-centric consistency model.

In data-centric consistency model we made the assumption that a process interacts always
with the same replica of the data. If we relax this assumption, there are consistency model
that deal with this, considering consistency by the prospective of users. These are the so
called Client-centric consistency models. There are some properties that are desirable:

• Monotonic reads : if a process reads the value of a data item x, any successive read
operation on x by that process will always return that same value or a more recent
value.

• Monotonic writes: a write operation by a process on a data item x is completed
before any successive write operation on x by the same process.

• Read your writes: the effect of a write operation by a process on a data item x will
always be seen by a successive read operation on x by the same process.

10

• Writes follow reads: a write operation by a process on a data item x following a
previous read operation on x by the same process is guaranteed to take place on
the same or more recent value of x that was read.

In client-centric consistency models, each operations gets a unique identifier (e.g. replica
ID + sequence number) and two different sets are defined for each client: a read set
which contains write identifiers relevant for the read operation performed by the client,
and a write set which keeps the identifiers of the write performed by the client.

Describe what an epidemic algorithm is, how it works and what
properties it entails. How does this compare to gossiping and
other propagation strategies?

Epidemic algorithm is propagation strategy for updates in a client-centric consistency
protocol. It is heavily based on theory of infectious disease spreading: updates are
spread by pairwise communication among nodes and the aim is to have all the nodes
infected. This algorithm is instrinsically distributed and redundant, since it is fault-
tolerant, scalable and resilient to topological changes of the network. It cannot provide
deterministic guarantees, but it enables relevant overhead savings.

We can distinguish between different types of nodes: infective are nodes that are will-
ing to spread their updates, susceptible are nodes that can be infected and removed are
update nodes not willing to re-propagate.

We have seen different propagation strategies, for instance Anti-entropy, in which a
server chooses at random another server to propagate its updates. Communication can
be push, pull or both and notifications semantic can be either positive (change seen) or
negative (change missed). Gossiping is another strategy which works in this way: an
update propagation triggers another towards a different server. If the update has already
been received, the server reduce the probability to gossip further. This approach can be
complemented with anti-entropy.

(2) Describe the two different approaches for primary based con-
sistency protocols, underlying also the advantages and disadvan-
tages of having a backup system.

In primary based consistency protocols, all writes go through a single primary server, in
charge of keeping accesses consistent. We can have different variants of this protocol:
local writes vs remote write and with or without a backup server.

• Remote-Write: it is a straightforward implementation of sequential consistency. A
remote server is in charge of managing access to data. Each read/write operation
is forwarded to it. The main issue is blocking client while updates propagate:
we can use an asynchronous implementation but with no guarantee of sequential
consistency in the presence of failures.

• Local-Write: the difference is that the data item requested (both read and write) is
migrated to the server requesting the update, which becomes the new primary. This
approach can provide better performance in case of locality and multiple accesses.

11

The idea is that if you want to access some data, it is highly probable that the
client is the one who is working with data. Therefore I move the primary as close
as possible to the client.

Describe the approaches of ”active replication” and ”quorum-
based replication”, underlying the best and worst configurations
for both.

Active replication and quorum-based replication are both Replicated-Write protocols,
characterized by the fact that write operations can be carried out at multiple replicas.

Active replication: operations are sent to each replica and we must preserve order-
ing through a timestamp or a centralized coordinator. In order to avoid problems with
multiple invocations we can use a coordinator which is in charge to forward messages
from all the replicas just once.

Quorum-based replication: is another kind of protocol in which an update occurs
only if a quorum of the servers agrees on the version number to be assigned. The client
contacts several replicas and set the number of replicas that it have contacted to perform
read (NR) and the number of replicas that it have contacted to perform a write (NW).
Typically these two properties must be respected to avoid read-write or write-write con-
flicts:

• NR + NW > N (avoid read-write conflicts)

• NW > N/2 (avoid write-write conflicts)

Where N is the number of total nodes in the distributed system.

Briefly describe the Hadoop implementation of a distributed file
system, and which strategies have been adopted to avoid corrup-
tion of files and allow clients to recover their data in case of a
rack failure.

HDFS is a distributed file system that provides scalable and reliable data storage, and it
was designed to span large clusters of servers. HDFS has a master-slave architecture
with one single namenode and several datanodes. The namenode is in charge of managing
the filesystem namespace (metadata): it keeps a namespace image, an edit log and a list
of all the datanodes and which blocks they store. The master doesn’t keep any file by
itself. Each file uploaded to HDFS is splitted in blocks of 64 MB each for minimizing
seek and maximizing transfer rate.

Read and write operations are performed in this way: for reading, firstly client reads
a list of blocks from the namenode, then the namenode guides the block search through-
out the HDFS network by proximity. For file writing, namenode decide where to allocate
the blocks. The first datanode receives the block, saves it locally and forwards it to the
next replica. Datanodes are chosen in a smart way to balance reliablity and bandwidth. A
customized strategy can be configured, but by default replicas are two nodes on the same

12

rack (to improve write performance) and one node on a different rack (to deal with rack
failures). In case of a node failure, the failed node is removed from the list of available
nodes in the name node and the under-replicated blocks are sent to new destinations.

13

6 Synchronization

(2) Describe the Christian’s algorithm for synchronization. Un-
der which assumptions it works at best? Why?

A common approach for synchronization protocol is to let the clients contact periodically
a time server which can provide date and time with precision. The assumption is that
messages are assumed to travel fast w.r.t. required time accuracy.

The possible problems are: time might run backwards on the client machine and there-
fore changes must be introduced gradually. Message transfer time makes the timestamp
provided by the server obsolete. Assuming that the RTT (Round Trip Time) is split
equally between request and response and it is averaged over several measurements:

• T0: client sent request

• T1: client received response

• I: interrupt handling time on the server

• CUTC : time sent from server to client

• RTT = T1− T0− I round trip time

we can compute the correct time at the client T1 = CUTC + RTT/2.

Describe the different protocols you know to synchronize clocks
in distributed systems.

In order to ensure synchronization in a distributed system we need distributed protocols
that synchronize physical clocks. We have seen three main protocols:

• Christian’s Algorithm: see answer before.

• Berkeley Algorithm: in several algorithms time server is passive, it simply responds
to clients answers. In this algorithm the server plays an active role: periodically
asks the connected clients their time, collects all the responses, averages it and then
sends back for each client a personalized adjustment w.r.t. the mean.

• Network Time Protocol : NTP is used in practice over the Internet on top of UDP.
It works creating an hierarchy of servers: the top most machines hold the correct
time (connected to a UTC source) while the machines at the lowest level are users
machines. Is a variation of the Christians algorithm which tries not only to ensure
synchronization but also tries to calculate the error. Two servers at two different
layers communicate:they periodically send to each other messages, characterized by
two main variables:

– oi: estimate of the offset of clock B relative to clock A

– di: measure of the accuracy of this estimate

Basically, we need to find o, the true clock difference between the two clocks of A
and B and we use the estimator oi to approximate it.

14

Describe scalar clocks in general and in particular describe the
Lamport’s protocol to guarantee totally ordered multicast mes-
saging (clarify the assumptions)

In many applications it is sufficient to agree on a time, even if it is not accurate w.r.t.
the absolute time. What really matters is often the ordering of events rather than the
times-tamp itself. Furthermore, in distributed systems, if two process do not interact
with each other is not necessary to deal with synchronization (they are concurrent).

L. Lamport invented the happens-before relationship. It aims at capturing a potential
causal ordering among events. It is potential because two events can be related by the h-b
relationship even if there is no real causal connection among them or, since information
can flow in other ways then message-passing, two messages can be causally related with
no h-b. If two events e and e’ occur in the same process and e occurs before e’ then
e→ e′. This property is transitive.

The algorithm works this way: each process keeps a scalar clock (using integers to repre-
sent the clock value) which is incremented every time the process sends a message. The
message sent is timestamped with the current scalar clock of the sender. If a message is
received instead, the scalar clock of the receiver is set in this way L = max(ts, L).

Totally ordered multicast delivers messages in the same global order. The assump-
tions are that links are reliable and FIFO. Messages are sent and acknowledge using
multicast and each message keeps a timestamp of the sender’s scalar clock. Receivers
(including the sender) store all messages in a queue, ordered according to its timestamp
and eventually all the processes will have the same messages in their queues. A message
is delivered to the application only when it is at the highest in the queue and all its acks
have been received. Since each process has the same copy of the queue this ensure that
messages are delivered in the same order globally.

(3) Describe vector clocks in general, compare them with scalar
clocks and describe how the former can be used to guarantee
causal delivery in a multicast communication system (clarify the
assumptions you make).

A logical clock is a mechanism for capturing chronological and causal relationships in
a distributed system. Distributed systems may have no physically synchronous global
clock, so a logical clock allows global ordering on events from different processes in such
systems. In the vector clocks solution each process pi keeps a vector Vi of N values
(one for each process included itself). V [i] is the number of events that have occurred at
Pi.

The vectors are update following these rules: initially the vector is initialized at 0 in
every position. Then if an event happens locally, the counter of the process itself is incre-
mented. When a process i receives a message from a process j sets V [j] = max(V [j], t)
and then increment V [i]. Compared to scalar clocks they use a vector of values instead of
a single counter, and in this way determine an isomorphism between the set of partially

15

ordered events and their timestamps. In vector clocks by looking only at the timestamps
we are able to determine whether two events are causally related or concurrent, which
was not possible with scalar clocks.

A slight variation of vector clocks can be used to implement causal delivery of messages
in a totally distributed way in a multicast communication system:

• Messages and replies sent using reliable, FIFO ordered, channels

• Need only to preserve the ordering between messages and replies

• Vector incremented only when send a message, on receive just merge not increment

• Hold a reply until the previous messages are received

(4) Describe mutual exclusion. Define it in precise terms and
show the fully distributed protocol to achieve it using scalar
clocks (clarify the assumptions for the protocol to work cor-
rectly).

Mutual exclusion is a way to prevent two process to interfere when accesses some shared
resources. In a distributed setting we do not have shared memory, but we have shared
resources, such a printer. The assumptions for the protocol to work correctly are processes
and channels reliable. The requirements are:

• Safety property : at most one process in the critical zone

• Liveness property : no deadlock no starvation

• Optional: if one request happened before another, the entry is granted in that order

A naive solutions consists in using a centralized server for coordinating access, but it will
be a single point of failure and a bottleneck for performances.

Scalar clocks can be used to ensure mutual exclusion in this way:

• Requesting: to request access to a resource a process Pi multicasts a request message
m with timestamp Tm attached. When a process Pj receives m:

– If does not hold the resource and it is not interested it acknowledges Pi

– If it holds the resource it puts the request into a local queue ordered according
to Tm

– If does not hold the resource but it is interested in holding it and it has already
sent a request, it compares Tm with the timestamp of its request and if Tm

is the lowest it acknoledges Pi, otherwise it inserts the request into the local
queue.

A resource is granted to Pi when its request has been acknowledged by all the other
processes.

• Releasing: on releasing a resource the process acknowledges all the requests queued
while using that resource.

16

Describe leader election. The goal, possible usage scenarios, how
to implement it, under which hypothesis the presented protocol
works.

Many distributed algorithms require a process to act as a coordinator. We have several
processes and we want to elect a leader such that every process agree. The main assump-
tion is that nodes are distinguishable and the system is a closed system: processes known
each other and their IDs but they don’t know who is up and who has failed. There are
several algorithms which differ on the selection process:

• Bully election: in this algorithm we have two additional assumptions:

– Reliable links

– It is possible to decide who has crashed (synchronous system)

The algorithm works in this way: when a process P notices that the coordinator is
no longer responding initiates an election process, sending an ELECT message to
all the processes with a greater ID. If no one answers P wins the election and send
a COORD message to all the processes. If P’ responds, initiates a new election.
The process with the highest ID always win the election.

• Ring based: the assumptions are that nodes are organized in a (physical or logical)
ring topology. When a process detects a failure of the coordinator, send an ELECT
message with its ID to the nearest neighbour. On receiving, if a process is not in the
list of processes in the message adds its ID and propagate to the next neighbour.
Otherwise change the message to COORD and propagate. On receiving a COORD
message the process with the highest ID in the message is assumed to be the new
coordinator.

Provide a formal definition of a ”cut” and a ”consistent cut”.
Make an example of a consistent cut and a non consistent one.

The global state of a distributed system consists of the local state of each process together
with the messages in transit over the links. Since capturing the global state is impossible
(no global clock) we need a way to approximate it. A cut is an approximation of a
snapshot of a system. A cut is said to be consistent if for any event e it includes, it also
includes all the events that happened before e. A consistent cut represent a situation in
which the system could have been.

Formally, a cut of a system S composed of N processes can be defined as the union
of the histories of all these processes up to a certain event (a history is a collection of
events):

C =< hk1
1 ∪ ... ∪ hkn

n >

hki
i =< e0i , e

1
i , ..., e

ki
i >

A cut is said to be consistent if:

∀e, f : e ∈ C ∧ f → e⇒ f ∈ C

To make an example is sufficient to show that a non consistent cut is one in which there
is an arrow that goes across the cut.

17

What is problem of termination detection in a distributed system
and how can we solve it?

We want to know when a computation has completed or deadlocked (i.e. no more useful
work can be done). All processes should be idle and there should be no message in transit
in the system. How can we detect termination?

A simple solution, proposed by Tanenbaum and then proved to be wrong, uses distributed
snapshot and the notion of predecessors and successors across processes that send and
receive tokens.

If we are in the case of diffusing computation, i.e. where all process initially are
idle except for the init process, we can use the Dijkstra-Scholten algorithm for termina-
tion detection. The algorithm works creating a tree out of the active processes. When
a node finishes processing and it is a leaf, it can be pruned from the tree. When only
the root remains alive and it has completed processing we can state that the system has
terminated. An idle node is activated when a message is sent to it and it is add to the
tree as a child of the sender. The advantage of this algorithm is that it has a low overhead
since it does not interact with never activated processes.

18

7 Peer to Peer

Describe the evolution of distributed systems, from client-server
interactions to hybrid implementations (partly c/s, partly p2p),
to full p2p implementations.

A distributed system in its most simplest definition is a group of computers working
together as to appear as a single computer to the end-user. The most commonly used
paradigm in todays Internet is still C/S architecture. It is based on an active component
(client) which requests data from a passive component (server) which replies back with
the information needed. It is a successful paradigm (Web, FTP, DNS), however, it has
several drawbacks: it is hard to scale and present single point of failure.

Peer to Peer (2P2) is a completely different paradigm. There are no differences be-
tween components in the network (they are all ”peers”), resources and services are shared
through direct exchange between peers. In this way the paradigm can take advantage
of resources at the end of the network, overcoming the problem of leaving some re-
sources unused of C/S architecture. 2P2 paradigm quickly grown in popularity thanks
to the number of end-host resources which is increased dramatically and the availability
of broadband connectivity. In 2P2 nodes form a logical overlay network over a physical
one and they are dynamic: they can join and leave the network at any time.

Napster was the first 2P2 file sharing application. It was a killer app: 50M downloads. It
can be seen as an hybrid implementation of C/S and 2P2: end-host nodes are active con-
tributors of the network since they share files with other peers, on the other hand there
is a central server which is in charge of keeping the state of all the nodes and performing
all the search processing. In KaZaA some peers are elected as ”supernodes” to perform
searching in a more efficient way. Gnutella and Freenet are example of fully decentralized
pure 2P2 networks.

Describe the range of solutions in p2p systems regarding the
problem of searching for items in the peers network: are there
solutions offering any guarantees of search time?

Searching and retrieving resources is a fundamental issue in peer-to-peer systems due to
their inherent geographical distribution. Basically the problem is how to direct queries
towards nodes that can answer in the most efficient way.

Napster, the first 2P2 file sharing application born in the 2000, used a central server
that contains the state of all the nodes (O(N)) but allowed to have a search scope and
search time of O(1). Gnutella instead, which is fully decentralized, implements the
most simple algorithm for searching: flooding. Messages are sent from nodes to its neigh-
bours and so on, bounded by a maximum number of hops (HTL Hops to live). The
search scope in this case is O(N) while search time is O(2D) where D is the average
HTL. In KaZaA searching is performed through an optimized version of flooding: some
nodes of the network which have a good connection are ”supernodes” and they retain
information about the files of the other nodes. Supernodes direct searching query towards

19

other supernodes. KaZaA, which is a propretary protocol, offers no guarantees on the
sarch scope or time.

BitTorrent is the most used file sharing network since 2007. Its searching mechanism
is out-of-band: you need to use external services to retrieve a tracker for the file that
you are willing to retrieve. A tracker is a server that keeps track of where file copies
reside on peer machines, which ones are available at time of the client request, and helps
coordinate efficient transmission and reassembly of the copied file.

Describe the evolution of P2P algorithms, especially in the four
basic operations: join, publish, search and fetch.

In the first 2P2 file sharing application, Napster, joining, searching and publishing relued
completely on a centralized server which was in charge to keep the state of all the avail-
able nodes. Only fetching was performed directly between peers.

Gnutella and Freenet, which are pure 2P2 architectures, solve the problem of joining
by selecting a subset of nodes (neighbours) to be contacted on startup (for Gnutella
PING/PONG messages are used). Searching is performed with a simple flooding algo-
rithm in the case of Gnutella while Freenet uses an hill-climbing method with backtracking
leveraging also on caching properties of the nodes to optimize the queries. Publishing in
Gnutella is not even needed. Freenet tries to put ”close” file together in order to create
a small world network model. Fetching in both cases is performed sending files all the
way back to the client.

KaZaA relies on supernodes (subset of nodes of the network with high bandwidth) to
perform joining, publishing and searching, which is done using flooding but only between
supernodes. BitTorrent, on the other hand, uses a tracker server to perform joining and
publishing. Searching is out-of-band in this protocol. Fetching is performed directly
between peers: can fetch simultaneously from multiple peers.

Describe the BitTorrent protocol in detail, in particular the ”chok-
ing” mechanism: what problem is tackled with this approach?
Is this problem treated also by other protocols?

BitTorrent is the most used file sharing network since 2007. It allows many people to
download the same file without slowing down everyone elses download. It is focused on
providing fast fetching rather than searching.

In BitTorrent we can distinguish two different types of peers: leeches, peers that have
only portions of the file and seeders which instead have the entire file. Together leeches
and seeders form a swarm. Files are broken down into smaller fragments (usually 256KB
in size) to start uploading as soon as possible. Chunks of file are not downloaded in
sequential order and therefore they need to be assembled by the receiving machine.

When a peer joins the network it has to contact a tracker server which contains a list of
available peers, then it can start downloading from these peers (both seeders and leech-
ers). Searching instead is performed out-of-band, meaning that the client must rely on

20

third-party sevices (e.g. the web) to retrieve a .torrent file, a meta-data file describing
the file(s) to be shared. It holds:

• Name and size of the file(s)

• Address of the tracker

• Address of the peers

• Checksum of all blocks

Chocking is a special mechanism of the BitTorrent protocol which tries to solve the
problem of free riders: peers that only download without contributing to the network.
Choking is a temporal refusal to upload: every 10s a choking evaluation is performed and
each peer un-chokes a fixed number of peers. The evaluation is based on the download
rate between peers. The protocol implements also an ”optimistic” un-choking mecha-
nism that is uploading to a peer regardless of the current download rate. This allows to
discover currently unused connections.

Several other protocols tried to deal with the problem of free riders in different ways.
Napster uses an user-based approach: ”I will not upload to you if you don’t share any-
thing worth”. eMule uses a credit system: the more you upload the more credits you
get. Priority in the queues is based on credtis. KaZaA has a Partecipation Level system
which is flawed, as it relies on the client accurately reporting their Participation Level
and therefore it is easy to cheat.

Compare the network model of Freenet with DHT approaches,
in particular with Chord.

Freenet is a P2P application designed to ensure true freedom of communication over
the Internet. It was originally developed by Ian Clarke in 1999. It allows anybody to
publish and read information with complete anonymity. Freenet is built with the aim
of no centralized control or network administration. The protocol works in this way: on
startup, client contact a few other nodes it knows about it and gets its own unique id.
Searching is performed through a query for file id using a steepest-ascent hill-climbing
search with backtracking. If the query finds a file, it returns it all the way back to the
sender. Insertion of new data (publishing) can be handled similarly to searching: file is
sent toward the node which stores other files whose id is closest to file id. In this way
inserted data is routed in the same way as a request would.

Each node in the Freenet model keeps a routing table associating the key with the data
source and during searching data is cached along the way. In Chord, each node stores
items and keeps a finger table which is able to perform searching in O(log(n)) thanks
to the way items are stored in nodes. This approach doesn’t exploit caching. Freenet
network tend to be a ”small world” and ”closed” files id tend to be stored on the same
node. Information migrate towards area of demand and files are prioritized according to
popularity.

In Freenet intelligent routing makes queries relatively short and keeps search scoping
small but still we don’t have no provable guarantees. Chord, on the other hand, guaran-
tees to find the item in at most log(N) steps, where N is the number of nodes.

21

8 Fault tolerance

Describe and discuss the kind of failures (the failure model) that
may happen in a distributed system.

If we consider a distributed system as a collection of processes that communicate with one
another and with their clients, not adequately providing services means that processes,
communication channels, or possibly both, are not doing what they are supposed to do.
We can distinguish between three types of failures:

• Omission failures:

– Processes: fail-safe (sometimes wrong but easily detectable output), fail-stop
(detectable crash), fail-silent (undetectable crash).

– Channels: send omission, channel omission, receive omission.

• Timing failures: (only for synchronous systems)

– Both: occur when one of the time limits defined for the system is violated.

• Byzantine failures: (arbitrary failures)

– Processes: may omit processing steps or add more.

– Channels: message content may be corrupted, non-existent messages may be
delivered, or real messages may be delivered more than once.

A system is said to be fault tolerant if it can provide its services even in the presence of
faults.

Describe the failure model for a distributed system in general
(processes and channels). Which is the most common type of
failure for channels? Why this type of failures which are very
hard to manage for processes are not so relevant/problematic for
channels?

See previous answer for a detailed explanation of what are the failure model that may
happen in a distributed system.

Byzantine failures are really hard to manage for processes. If the system is asynchronous,
Fisher et al. (1985) demonstrated that agreement is impossible between a group of pro-
cesses even if just one is faulty. The main problem is that we cannot distinguish a slow
process from a dead one. For channels instead byzantine failures are not so problematic.
Messages can be resent if they are missing or if they are sent twice is the process that
ensure that the second one is discarded.

22

Describe the problem of agreement in a group of processes under
the various conditions (type of admitted failures, async vs sync
systems...).

A number of tasks may require that the members of a group agree on some decision before
continuing, but since we are dealing with faults, we want all the non faulty processes to
reach an agreement. The decision is taken by the processes themselves rather than by an
external observer (e.g. voting mechanism). This is also known as the consensus problem.
A set of properties must hold:

• Agreement : no two processes decide on different values

• Validity : if all processes start with the same value v, then v is the only possible
decision value

• Termination: all non faulty processes eventually decide

In the most simple case we consider a synchronous system in which all processes evolve
in synchronous round, with reliable channels and processes that may have omission
failures: it is possible to reach an agreement in at least f + 1 rounds with f being a
bound on the number of failures using the Floodset algorithm. The algorithm works in
this way:

• A default value v0 is specified, then each process keeps a variable W which is a
subset of V initialized with its start value.

• For f + 1 rounds each process sends W to all other processes and adds the received
set to its W.

• After f +1 rounds, if |W | = 1 decide on the only element of W, otherwise if |W | > 1
decide on v0.

If we introduce also byzantine failures, the problem can be described in terms of
armies and generals (firstly formulated by L. Lamport): communication is perfect, but
some generals are traitors. Lamport (1982) showed that if there are m traitors, 2m+1
loyal generals are needed for an agreement to be reached, for a total of 3m+1 generals.
The algorithm works in this way: each node send a value to all the other process. The
processes collect all the values in a vector, send this vector to the others and then they
compute the vector using majority for each vector position.

Let’s now consider asynchronous systems: Fischer et a1.(1985) proved that in a dis-
tributed system in which messages cannot be guaranteed to be delivered within a known,
finite time, no agreement is possible if even one process is faulty. The problem with such
systems is that arbitrarily slow processes are indistinguishable from crashed ones (i.e.,
you cannot tell the dead from the living).

(2) Describe the various alternatives for reliable communication
when process are reliable but links are not.

We want to achieve a reliable group communication. Our assumptions are that groups
are fixed, and processes non-faulty. Therefore, all group members should receive the

23

multicast (not necessarily in the same order). There are several alternatives to ensure a
reliable communication:

• Positive acknowledgments: the sender sends its message to all the members and
they reply with an ACK message if they receive it. This approach leads to an ACK
implosion.

• Negative acknowledgments: if a process doesn’t receive a message, it sends a NACK
in multicast. The other processes on receiving the NACK suppress their feedback.
In this way the sender receives just one NACK but everyone must process NACKs.

• Hierachical Feedback Control: in this approach receivers are organized in groups
headed by a coordinator and groups are organized in a tree routed at the sender.
The main drawback is that the hierachy tree has to be constructed and mantained.

Discuss virtual Synchrony.

Virtual synchrony is an interprocess message passing technology which solves the atomic
multicast problem. The problem is the following: we want a message be delivered either
to all the members of a group of processes or to none, and that the order of messages be
the same at all receivers (e.g. an update in a database with replicas). Ideally we would
like close synchrony :

• Any two processes that receive the same multicast messages or observe the same
group membership changes to see the corresponding events in the same order

• A multicast to a process group to be delivered to its full membership. The send
and delivery events should be considered to occur as a single, instantaneous event

Unfortunately, close synchrony cannot be achieved in the presence of failures.

Virtual synchrony is a form of reliable multicast which follows these (weaker) require-
ments:

• Crashed processes are purged from the group and have to re-join

• Messages from non-faulty processes are delivered to all the other processes

• Messages from a failing process are processed either by all correct members or by
none

• Relevant messages are delivered in a consistent order with respect to other multi-
casts and with respect to each other

The group view is the set of processes to which a multicast should be delivered as seen by
the sender at sending time. A view changes every time a process join or leave the group.
We can see view changes as another from of multicast message. Therefore multicasts take
place in epochs separated by group membership changes.

Retaining the virtual synchrony property, we can identify different orderings for the
multicast messages:

• Unordered multicast

24

• FIFO multicast

• Causally-ordered multicast

Describe briefly when we build the rollback-dependency graph
and the checkpoint dependency graph, how we build them and
the general goal these algorithms solves.

When processes resume working after a failure, they have to be taken back to a correct
state. Since we are in a distributed setting, we do not have a global state of the system
from which we can recover the state of each process. Therefore, each process periodically
and independently records its own state (the rectangles in the diagram). Our goal is to
produce a recovery line, a set of checkpoints which together form a consistent cut.

Both rollback and checkpoint dependency graph are built starting from a graph that
shows the processes dependencies between intervals. When a process sends a message
to another, it includes also information about its current checkpoint interval, therefore
it creates a dependency between these two intervals. Both graphs change the interval
dependencies into checkpoint dependencies: rollback creates a dependency (an arrow)
between the ending checkpoint of the interval of the sender and the ending checkpoint
of the interval of the receiver. Checkpoint graph instead is built creating a dependency
from the starting checkpoint of the sender and the ending checkpoint of the receiver.

The two algorithms work in this way:

• Rollback dependency graph: the recovery line is computed by marking the nodes
corresponding to the failure states and then marking all those which are reachable
from one of them. Each process then rolls back to the last unmarked checkpoint.

• Checkpoint dependency graph: take the latest checkpoints that do not have depen-
dencies among them.

25

9 Big Data

Consider the architecture of a system for processing large vol-
umes of data on a cluster of machines. Define and compare
the following design/architectural choices: batched vs stream-
ing, pipelined vs scheduled. In particular, discuss their benefits
or limitations in terms of latency, throughput and elasticity.

Data stream processing is a computer programming paradigm based on two concepts:
streams of data that flow through and processing operators. In this context, a platform
for Big Data can have two key design/architectural choices:

• Batched vs Straming (data) - Throughput / latency

• Pipelined vs Scheduled (operators) - Load balancing / fault tolerance

In batch computations the stream is divided into batches of data and each operator pro-
cess a batch at a time. It might introduce some delay since we have to wait until a batch
is fulfilled with data. On the other hand, processing elements in batch is typically more
efficient since data is transferred in larger blocks. Throughput is increased in this way.
In streaming computations instead each element gets processed as soon as it is available.
We have lower delay since results are ready after the computation time of the operator
but we might have lower throughput. A typical tradeoff is usign microbatches. This
technique is implemented in Apache Spark: uses batches of small dimension to have a
high throughput with acceptable delay.

In case of streaming computation, at system start up, the operators are instantiated
and allocated to physical nodes. Then the data flows from node to node where are pro-
cessed. Operators form a processed pipeline which can be used to achive both data and
task parallelism. In the case of batch computations, operators can be scheduled (instan-
tiated on a node) on demand, when a batch is available for processing. Load balancing is
easier in the case of scheduled execution, it can change number of instances at runtime. In
streaming computation we can adopt techniques that are similar to scheduling algorithms
in operating systems. What happens in the two cases if a node fails? In case of scheduled
operators, the task is simply rescheduled. In pipelined processing, periodically checkpoint
to (distributed) file system and in the case of failure, reply from the last checkpoint.

What is the difference between HPC and cluster computing?

What is Map-Reduce?

MapReduce is a programming model for cluster computing introduced by Google in early
2000s. It enables application programs to be written in terms of high-level operations
on data, splitting the computation in two different phases: Map and Reduce. The for-
mer processes individual elements and for each of them produces in output one or more
< key, value > pairs. The latter processes all the values with the same key and outputs
a value. The developers need only to specify the behaviour of these two functions.

The platform is in charge to control:

26

• Scheduling: allocates resources for mappers and reducers (master-slave architec-
ture)

• Data distribution: moves data from mapper to reducer (tries to exploit data locality)

• Fault tolerance: transparently handles the crash of one or more nodes (map and
reduce must be re-executed)

Typical MapReduce applications are found in tasks in which a sequence of these steps
is required, series of data transformation and iterating processes. It is a fixed paradigm
with an high overhead but is simple to use from the developer point of view and is good
for large-scale data analysis.

27

10 Security

Describe what is access control, how it works and the two main
ways of implementing it in a distributed system.

Access control means managing access rights. In a non distributed system is quite easy:
each user has rights to use resources. In distributed systems is not trivial: we should
create an account for each user on each machine or use a centralized approach. A better
approach is using a reference monitor which mediates requests from subjects to access
objects.

Conceptually, we have an access control matrix which is a sparse matrix. We can imple-
ment it in two different ways:

• ACL: Access Control List. Each object has its own. A client create an access
request r as subject s and the server is in charge to check. One drawback of ACL
is that it occupies great memory. We can use groups to build a hierarchy in ACL.

• Capabilities Lists : each user has its own capabilities list. Client create access request
r for object o passing its capability C.

Describe the logical key hierarchy approach, and for which prob-
lem it is used.

In the context of secure group communication, we need a way to preserve the integrity of
the system even when a process joins or leaves the group. Basically, two properties must
be preserved:

• Backward secrecy: process cannot decrypt message before joining

• Forward secrecy: process cannot decrypt message after leaving

Logical key hierarchy is an approach for efficient key distribution: leaves are members
with keys, in the root we have the DEK (Data Encryption Key) and in the other nodes
KEK (Key Encryption Keys). Each member knows each key up to the root. In case of
leaving we change all the keys of the leaving member and we can diffuse efficiently the
new keys, encrypting each key with the children.

Describe the use of symmetric and asymmetric encryption algo-
rithms in the secure protocols we studied. What are the ”session
keys”? Why do we use them?

UNCLEAR: does he want a list of all algorithms: RSA, DH, Digital Signature... and
their applications?

In order to provide secure communication in a distributed system we need to build a
secure channel. In a secure channel authentication and message integrity should go to-
gether. A message is no longer useful if it has been altered or if I don’t know its source.
Authentication needs shared information between the authenticator and the party: this

28

information is a shared authorization key which can be either symmetric or asymmetric.
Authentication can be ensured using a challenge-response schema between parties.

Once authentication is set up, usually a session key (symmetric) is exchanged to provide
integrity and possibly confidence of following messages. Session keys are useful to limit
the wearing of the main key (used for authentication), meaning that an active attacker
can solicit use of the key. After session is closed the session key must be destroyed.

Describe the problem of Trust when designing and using the
layers that build a distributed application (from the network up
to the application itself). What is a Trust Computing Base?
Where the security mechanism should be put?

When considering the protection of a (distributed) application, there are essentially three
approaches that can be followed:

• Focus on the data

• Focus on the possible operations invoked on the data

• Focus on the users that have access to the data

In order to enforce a security policy, you need security mechanisms to be put somewhere
in the protocols stack. If you don’t trust security at a low level you can build your
mechanisms at a high level. On the other hand, if you put them on a high level they
might depend on lower level mechanisms. Therefore you need to trust on them. This set
is called Trusted Computing Base (TCB).

What is a certification authority? Why there are also different
approaches to the same problem? (i.e. the ”Web of Trust”?)

A digital signature ensures that plaintext was encrypted with a certain key but it says
nothing about who is using that private key. Public-key certificates solve this problem: a
tuple (identity, public key, CA sign) is created. The CA digitally signs files called digital
certificates, which bind an identity to a public key.

The public key of the CA is assumed to be well-known. The basic idea is that per-
vasive information is hard to alter. Usually CA are organized in a hierarchical way: CA
uses its private key to sign the certificate, its public key must be trusted by another CA.
Therefore we need a Top level CA which is a trusted element. In order to distribute this
trusted element we need a central authority that releases it. Another approach is PGP
Pretty Good Privacy (web of trust) where users can authenticate other users by signing
their public key with their own.

Why Kerberos is able to use a simplified Needham-Schroeder
implementation?

The Needham-Schroeder protocol is one of the two key transport protocols intended for
use over an insecure network. These are:

29

• Symmetric Key Protocol : based on a symmetric encryption algorithm. It forms
the basis for the Kerberos protocol. This protocol aims to establish a session key
between two parties on a network, typically to protect further communication.

• Public-Key Protocol : based on public-key cryptography. This protocol is intended
to provide mutual authentication between two parties communicating on a network,
but in its proposed form is insecure.

Needham-Schroeder protocol uses nonces, which are arbitrary numbers that can be used
only once in communication.

Describe the Diffie-Helman protocol. Which problem does it try
to solve? Why is it only a partial solution? Which other solutions
have been proposed to solve the problem?

For authentication protocols we need a shared secret keys between each party or with
the KDC. Diffie-Helman is an algorithm which guarantees to exchange symmetric keys
on an insecure channels. It is a way to transform a secret key exchange in a public key
exchange. It is useful since it relaxes the assumptions of confidentiality and integrity to
only integrity. It is only resistant to passive attacks, while is vulnerable to active oppo-
nents (e.g. man in the middle attack).

The algorithm works as follow: g and n are publicly known numbers (with some math
properties). Alice picks x and sends gxmodn to Bob. Bob picks y and sends back gymodn.
Then they both compute gxymodn and in this way they have a shared secret.

30

	Disclaimer
	Modeling
	Communication
	Naming
	Consistency and Replication
	Synchronization
	Peer to Peer
	Fault tolerance
	Big Data
	Security

