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Introduction



Complex systems and networks

Many real complex systems can be modeled as networks

Function and behavior of networked systems can be largely influenced
by their structural features

Robustnesss and small-world effect are two crucial features which have
attracted increasing attention

A visualization of the Internet at the level of »autnomous systems» , local
groups of computers each representing hundred of thousands of machines.



Robustness (1/2)

Ability of a network to maintain its connectivity when a fraction
of nodes (links) is damaged

Growing attention in many fields (ecology, biology, economics,
engineering...)

Real networks are results of complex processes and designing them
from scratch is pratically impossible

!

Great interest in improving existing networks modifying the topology:
Adding links

Deleting links
Rewiring links



Robustness (2/2)

Natural connectivity A
Changes strictly monotonically with the addition or deletion of edges

Mathematically can be derived from the graph spectrum {1,, 1,, ..., A4}
as an average eigenvalue

1 N
I = In (N 2€Ai>
=1

Strong discrimination in measuring robustness and low computational
complexity



Small-world effect (1/2)

Most pairs of nodes are connected by a relatively short path
through the network

Distance d increases "slowly" with the number of nodes N
d =~ logN

Several implications: diffusion processes, cost-effectiveness
analysis...

Small-world network model

Regular Small-world

Increasing randomness



Small-world effect (2/2)

Extent of small-world effect measured with efficiency
(reciprocal harmonic average of shortest distance)
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Has some desirable mathematical properties:
Normalized to a range of [0, 1]
Valid for disconnected networks



Motivation

Little has been done on joint optimization of robustness and
other structural features

Previous works focused on:

How the selection for robustness or small world effect influence topology
[Netotea, Pongor, Cellular Immunology, 2013]

A tradeoff between small world effect and dynamical resilience
[Brede et al., Physics Letters, 2006]

These works did not preserve node degrees. For pratical purposes,
changing the degree of a node can be more expensive then changing
the connection



Scope

Demonstrate that there is a conflinct relation between robustness
and small world effect for a given degree sequence

Propose a multi-objective trade-off optimization model

Develop a heuristic algorithm to obtain the optimal trade-off topology
for both structural properties

Show that the optimal network topology exhibits a pronounced
core-periphery structure
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Robustness and small
world effect: a conflicting
relation



A single-objective optimization model

° Analyze the relation between robustness and small world effect
optimizing them separately

* Degree-preserving greedy optimization algorithm
* Degree conserved
°  Optimized network connected

° Rewring accepted if:
*  Objective improved

°*  Networkis connected

—————— —— —— —— —— ——————— —— —— ——
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Degree-preserving rewiring process
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A first hint

SF network (@)
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Degree correlation

Significant property since the degree is fixed in optimization

Statistical significance is described by the Z score, which reflects
density of connections

m(d;, dj) — (m,(d;, dj))
O-r(di' d])

Z(di' dj) —

m(d;, dj) is the number of links between nodes with degree d; and nodes
with degree d;

(m,(d,,dj)) and 0,(d;, dj) are mean and standard deviation of m(d;, dj)
in a randomized network sets generated from the specific network by
executing degree-preserving rewiring algorithm
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A second hint: correlation profiles

SF network  (a)A-optimized

V

Normalized Z score

ER network  (c)x-optimized
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Optimization on a real network

Zachary’s karate club: a social network in a karate club

at a US university in the 1970s
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Different optimizations, different topologies

Original

E-optimized
Multi-hub
Local star-like

A-optimized
Core-chain

r = assortativity coefficient

C = clustering coefficient
D = network diameter
o, = standard deviation of

distance distribution

SG = spectral gap
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Multi-objective
optimization model



A tradeoff optimization model

In order to consider both simultaneously robustness and small-world
effect in the optimization, SMS-MOEA is employed

SMS-MOEA: S-metric selection evolutionary multi-objective optimization
algorithm

MOEA Framework is a free and open source Java library which contains
fast, reliable implementations of many state-of-the-art multi-objective
evolutionary algorithms

Used to obtain the Pareto-optimal front of A and E, i.e. the best possible
set of non-dominating solutions

19



SMS-MOEA (1/2)

Part of the family of evolutionary algorithms, a generic population-based

heuristic optimization algorithms which use mechanisms inspired by
biological evolution

Crossover operator: fuses the genetic information from a pair of
chromosomes and generate a new chromosome.

o — — — — ———————————————————————— —— — — —

o — o — — — — — —— — — — e

Crossover operation between two randomly
selected networks G,, and G,,
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SMS-MOEA (2/2)

Mutation operator: aims to search new solutions in a local area to
accelerate the convergence. Rewiring process as the mutation operation

Reduce operator: when a new network is added to the population,
remove the inferior solution

SMS-MOEA maximizes the hypervolume of objectives
Hypervolume: area under Pareto-curves and bounded by reference point

Ap(p;, P) = (I(pi+1) — I(pi))(E(Pi+1) — E(py)

O

Hypervolume
QO Reference Point
@ Approximation Set

<— f,(x)
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SMS-MOEA: parameters

°  Population size =50
*  Crossover probability P, = 0.9
°  Mutation probability P,, = 0.05

° Initial solutions: generated from a SF network with N = 100, L. = 100, y = 3
executing the mutation operator for 103 times
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Pareto-optimal solutions set

* Visualization and correlation profiles
a) HighE, low 2

b) Both relatively high E and 1

C) High2,lowE

(a)

Normalized Z score
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Pareto-optimal solutions set

a)

Visualization and correlation profiles
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Conclusion



Discussion

Robustness and small world effect are of great importance
for designing and optimizing network topology

They arein a conflicting relation in optimization while preserving
the node degree

A tradeoff using a multi-objective optimization model is possible
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Network topologies

Efficient network shows a multi-hubs star-like structure
proved to be fragile for removals of high degree nodes

Robust network has a core-chain topology.
Long chain (ring) substructure has problems with communication

Tradeoff network exhibit a core-periphery structure
Optimizing robustenss strenghtens core link density and expand periphery

Optimizing small-world effect weakens core and fragment periphery
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Future works

Take into account other constraints such as:
Geography

Rewiring limitations

Investigate the tradeoff between robustness and small world effect in:
Directed networks

Weighted networks
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Thank you

Questions?



Crossover operator: a detailed explanation

° G, and G,, randomly selected for the crossover operation

Vi(G,1) = set of neighbours of nodeiin G4

V.(G,,) = nodes connected to i in G, but disconnected in G,

Vi(Grl) :j and VI(GrZ) =k

Randomly select a node m in G,, connected to jand disconnected to &
*  Gr: links ej;and e are removed and links e;; and e; are added

* Gy links ejcand e, are removed and links e;; and ey, are added

—— —————————————————————————————— — —

o —— — — — ———————— — — — — — — — ———— — — — — —
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Transition process of network topology

°  Properties are in ascending order of their value of 2
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