

POLITECNICO MILANO 1863

Artist-driven layering and user's behaviour impact on recommendations in a playlist continuation scenario

Creamy Fireflies

RecSys Challenge Workshop 2018

We are a team of six **MSc students** from Politecnico di Milano:

- Sebastiano Antenucci
- Simone Boglio
- Emanuele Chioso

- Ervin Dervishaj
- Shuwen Kang
- <u>Tommaso Scarlatti</u>

and one PhD candidate:

Maurizio Ferrari Dacrema

Spotify RecSys Challenge 2018

Spotify[®] RecSys Challenge 2018

- Music recommendation, automatic playlist continuation
- Recommend 500 tracks for 10K playlists, divided in 10 categories

Tracks

- Main: only data provided by Spotify through the MPD
- Creative: external, public freely available data allowed

Metrics

- R-precision
- NDCG
- Recommender Song Clicks

Preprocessing

The cold-start problem

For playlists with no interactions we built a feature space starting from **playlists titles**:

1. Removing spaces from titles made by only separated single letters

workout ---> workout

- 2. Elimination of uncommon characters
- 3. Extraction and reconciliation of dates
- 4. Apply Lancaster and Porter stemming to generate tokens

Preprocessing

Artist Heterogeneity

- Playlists sometimes exhibit a common underlying structure due to the way a user fills them:
 - Adding tracks from same album
 - Adding tracks from same artist (and featuring)
 - Creating a playlist with many different artists at first and add tracks of the same artists later on

Preprocessing

Artist Heterogeneity

Algorithms

Personalised Top Popular

- Track based
- Album based
- Collaborative Filtering Track based
- Collaborative Filtering Playlist based
- Content Based Filtering Track based
- Content Based Filtering Playlist based
 - Track features
 - Playlist names

Personalized Top Popular

- For playlists with just **one track**, we applied a personalized top popular algorithm at two levels:
 - *Track-based:* compute top popular over all the playlists that contain that track
 - **Album-based:** given the album of the track, compute top popular over all the playlists that contain the tracks of the album

Collaborative Filtering

Content Based Filtering - Track based

Content Based Filtering - Playlist based

- Two different approaches starting from the playlists title:
 - CBF based on tokens extracted in preprocessing phase
 CBF based on an exact title match

Ensemble

- Different algorithms are better suited for subsets of playlists with specific characteristics
 - Content-based: short playlists with similar features
 - Collaborative filtering: long and heterogeneous playlists
- Weighted sum of the predictions of each algorithm for each category:

Parameters tuning

- For each algorithm and each category:
 - k-nearest neighbours
 - power *p* for similarity values
 - Tversky coefficients
 - shrink term h

Ensemble:

- Bayesian optimization
- NDCG

Creative track

External datasets

- We tried several external datasets to enrich the MPD
- We used **Spotify API** to retrieve tracks popularity and audio features such as: loudness, danceability, energy, tempo...

Dataset Name	Data Type	Year
#nowplaying music ³	Listening behavior	2018
<pre>#nowplaying playlists</pre>	Playlist	2015
MLHD ⁴	Listening behavior	2017
FMA ⁵	Audio Features	2017
MSD ⁶	Audio Features	2011
Spotify API ⁷	Audio Features, popularity	2018

Creative track

- CBF which is able to adjust the artist-based track recommendation using 10 additional features
- Track-track similarity computed using only artists as features cannot distinguish tracks belonging to same artist

Creative track

- CBF which is able to adjust the artist-based track recommendation using 10 additional features
- Track-track similarity computed using only artists as features cannot distinguish tracks belonging to same artist

Creative track - Artist layering

- 1. Split tracks into 4 clusters with equal number of elements for each feature
- Considering feature clusters as a 3rd dimension, split the dense ICM into 4 sparse layers
- 3. Concatenate 4 layers of sparse matrices horizontally in order to create a final sparse ICM and apply CBF

- We improve our score leveraging on domain-specific patterns of the dataset
- Re-ranking with **boosts** that share a common workflow
 - 1. Start from a list of *K* predicted tracks for a playlist *p*
 - 2. Normalize the score
 - 3. Boost the precomputed score in this way:

$$Score_{p_k} = Score_{p_k} + Boost_{p_k}$$

Gap Boost

- Heuristic for playlists where known tracks are given not in order
- Re-rank the final prediction giving more weight to tracks which seems to better "fit" between all gaps

$$GapBoost_{p_k} = \gamma \sum_{g \in G} \frac{S_{k,g_l} S_{k,g_r}}{d_g} \quad \forall k \in K$$

Gap Boost

- Heuristic for playlists where known tracks are given not in order
- Re-rank the final prediction giving more weight to tracks which seems to better "fit" between all gaps

$$GapBoost_{p_{k}} = \gamma \sum_{g \in G} \frac{S_{k,g_{l}} S_{k,g_{r}}}{d_{g}} \quad \forall k \in K$$

$$k \qquad gap$$

$$p \quad t_{1} \qquad t_{2} \quad t_{3}$$

Gap Boost

- Heuristic for playlists where known tracks are given not in order
- Re-rank the final prediction giving more weight to tracks which seems to better "fit" between all gaps

$$GapBoost_{p_{k}} = \gamma \sum_{g \in G} \frac{S_{k,g_{l}} S_{k,g_{r}}}{d_{g}} \quad \forall k \in K$$

$$k \qquad gap$$

$$p \quad t_{1} \qquad t_{2} \quad t_{3}$$

Gap Boost

- Heuristic for playlists where known tracks are given not in order
- Re-rank the final prediction giving more weight to tracks which seems to better "fit" between all gaps

$$GapBoost_{p_{k}} = \gamma \sum_{g \in G} \frac{S_{k,g_{l}} S_{k,g_{r}}}{d_{g}} \quad \forall k \in K$$

$$k \qquad gap$$

$$p \quad t_{1} \qquad t_{2} \quad t_{3}$$

Gap Boost

- Heuristic for playlists where known tracks are given not in order
- Re-rank the final prediction giving more weight to tracks which seems to better "fit" between all gaps

$$GapBoost_{p_{k}} = \gamma \sum_{g \in G} \frac{S_{k,g_{l}} S_{k,g_{r}}}{d_{g}} \quad \forall k \in K$$

$$k \qquad gap$$

$$p \quad t_{1} \qquad t_{2} \quad t_{3}$$

Computational requirements

- To run our model we used a AWS memory optimized cr1.8xlarge VM with 32 vCPU and 244 GiB of RAM
- Parameters tuning for the ensemble takes up to 16h but only computed once

Step	Time	RAM
Model Creation	1.5h	80GB
Bayesian Optimization	16h	$\sim \! 15 \text{GB}$
Ensemble	$5\mathrm{m}$	< 8 GB
Postprocessing	8m	$<\!\!8\mathrm{GB}$

Results and conclusions

- Simple, modular architecture
- Extensible with no impact on the pre-existent workflow
- Implementation in Cython of the most computationally intensive tasks

Main track			Creative track			
R-prec	0.2201	3rd		R-prec	0.2197	2nd
NDCG	0.3856	3rd		NDCG	0.3845	2nd
Clicks	1.9335	7th		Clicks	1.9252	4th

SimilariPy - Fast Python KNN-Similarity algorithms for Collaborative Filtering models

bogliosimone / similaripy

To install:

pip install similaripy

Basic usage:

```
import similaripy as sim
import scipy.sparse as sps
```

```
# create a random user-rating matrix (URM)
urm = sps.random(1000, 2000, density=0.025)
```

```
# train the model with 50 knn per item
model = sim.cosine(urm.T, k=50)
```

```
# recommend items for users 1, 14 and 8
user_recommendations = dot_product(urm, model, target_rows=[1,14,8], k=100)
```


Thank you!

Questions?

creamy.fireflies@gmail.com

github.com/maurizioFD/spotify-recsys-challenge github.com/bogliosimone/similaripy

