
Titolo presentazione  
sottotitolo

Milano, XX mese 20XX

Artist-driven layering and user’s behaviour impact on
recommendations in a playlist continuation scenario

Creamy Fireflies

RecSys Challenge Workshop 2018

The Creamy Fireflies Team

We are a team of six MSc students from Politecnico di Milano:

• Sebastiano Antenucci
• Simone Boglio
• Emanuele Chioso

and one PhD candidate:

• Maurizio Ferrari Dacrema

• Ervin Dervishaj
• Shuwen Kang
• Tommaso Scarlatti

Spotify RecSys Challenge 2018

• Music recommendation, automatic playlist continuation
• Recommend 500 tracks for 10K playlists, divided in 10 categories

Tracks

• Main: only data provided by
Spotify through the MPD

• Creative: external, public
freely available data allowed

Metrics

• R-precision
• NDCG
• Recommender Song Clicks

Preprocessing

The cold-start problem

For playlists with no interactions we built a feature space starting
from playlists titles:

1. Removing spaces from titles made by only separated single letters

2. Elimination of uncommon characters

3. Extraction and reconciliation of dates

4. Apply Lancaster and Porter stemming to generate tokens

w o r k o u t —> workout

Preprocessing

Artist Heterogeneity

• Playlists sometimes exhibit a common underlying structure due to the
way a user fills them:

- Adding tracks from same album

- Adding tracks from same artist (and featuring)

- Creating a playlist with many different artists at first and add 
tracks of the same artists later on

Preprocessing

Artist Heterogeneity

Algorithms

• Personalised Top Popular
- Track based
- Album based

• Collaborative Filtering - Track based
• Collaborative Filtering - Playlist based

• Content Based Filtering - Track based
• Content Based Filtering - Playlist based

- Track features
- Playlist names

Personalized Top Popular

• For playlists with just one track, we applied a personalized top
popular algorithm at two levels:

- Track-based: compute top popular over all the playlists that
contain that track

- Album-based: given the album of the track, compute top
popular over all the playlists that contain the tracks of the album

Collaborative Filtering

Track based Playlist based

BM25 normalization

tracks similarity

score prediction

playlists similarity (Tversky)

score prediction

Content Based Filtering - Track based

BM25 normalization

tracks similarity

score prediction

ICM

TR
A

CK
S

FEATURES

FEATURES = ALBUMS + ARTISTS

Content Based Filtering - Playlist based

• Two different approaches starting from the playlists title:

1. CBF based on tokens extracted in preprocessing phase
2. CBF based on an exact title match

PL
AY

LI
ST

S

TOKENS

PL
AY

LI
ST

S

TITLES

Ensemble

• Different algorithms are better suited for subsets of playlists with
specific characteristics

- Content-based: short playlists with similar features
- Collaborative filtering: long and heterogeneous playlists

• Weighted sum of the predictions of each algorithm for each category:

Parameters tuning

• For each algorithm and each category:

- k-nearest neighbours
- power p for similarity values
- Tversky coefficients
- shrink term h

Ensemble:

- Bayesian optimization
- NDCG

Creative track

External datasets

• We tried several external datasets to enrich the MPD

• We used Spotify API to retrieve tracks popularity and audio
features such as: loudness, danceability, energy, tempo…

Creative track

• CBF which is able to adjust the artist-based track recommendation
using 10 additional features

• Track-track similarity computed using only artists as features
cannot distinguish tracks belonging to same artist

TR
A

CK
S

ARTISTS

1
1

1
1

1
1

Creative track

• CBF which is able to adjust the artist-based track recommendation
using 10 additional features

• Track-track similarity computed using only artists as features
cannot distinguish tracks belonging to same artist

TR
A

CK
S

ARTISTS

1
1

1
1

1
1

Creative track - Artist layering

1. Split tracks into 4 clusters with equal number of elements for each feature

2. Considering feature clusters as a 3rd dimension, split the dense ICM into
4 sparse layers

3. Concatenate 4 layers of sparse matrices horizontally in order to create a
final sparse ICM and apply CBF

Postprocessing

• We improve our score leveraging on domain-specific patterns of
the dataset

• Re-ranking with boosts that share a common workflow

1. Start from a list of K predicted tracks for a playlist p

2. Normalize the score

3. Boost the precomputed score in this way:

Postprocessing

Gap Boost
• Heuristic for playlists where known tracks are given not in order

• Re-rank the final prediction giving more weight to tracks which
seems to better "fit" between all gaps

Postprocessing

Gap Boost
• Heuristic for playlists where known tracks are given not in order

• Re-rank the final prediction giving more weight to tracks which
seems to better "fit" between all gaps

k

Postprocessing

Gap Boost
• Heuristic for playlists where known tracks are given not in order

• Re-rank the final prediction giving more weight to tracks which
seems to better "fit" between all gaps

k

Postprocessing

Gap Boost
• Heuristic for playlists where known tracks are given not in order

• Re-rank the final prediction giving more weight to tracks which
seems to better "fit" between all gaps

k

Postprocessing

Gap Boost
• Heuristic for playlists where known tracks are given not in order

• Re-rank the final prediction giving more weight to tracks which
seems to better "fit" between all gaps

k

Computational requirements

• To run our model we used a AWS memory optimized cr1.8xlarge
VM with 32 vCPU and 244 GiB of RAM

• Parameters tuning for the ensemble takes up to 16h but only
computed once

Results and conclusions

• Simple, modular architecture

• Extensible with no impact on the pre-existent workflow

• Implementation in Cython of the most computationally
intensive tasks

SimilariPy - Fast Python KNN-Similarity algorithms for
Collaborative Filtering models

Thank you!

Questions?

creamy.fireflies@gmail.com

github.com/maurizioFD/spotify-recsys-challenge

github.com/bogliosimone/similaripy

mailto:creamy.fireflies@gmail.com

