
Recommender Systems
Challenge 2017

Tommaso Scarlatti
897651



Overview

● Application domain: music streaming service, where users listen to 
tracks and create playlists

● Goal: discover which track a user will likely add to a playlist

● Evaluation:  MAP@5 (Mean Average Precision)

● 57.561 | 10.000  playlists | target
● 100.000 | 32.195  tracks | target
● 1.040.522  interactions



Data Preprocessing

Pandas

● Read/write .csv

● Manage datasets efficiently

● Build up a validation set

Scikit-learn

The module sklearn.preprocessing was 
used to binarize the input data and 
then normalize the matrices

CSR matrixtrain_final.csv

Grouped by playlist



Global strategies

Indices

● known_indices  ✔

● non_target_indices  ✔

● owner_indices  ✖

KNN

● K-nearest-neighbours used in 

every similarity matrix

Recommendations

● One playlist per cycle to avoid 

computation of large dense 

matrices

Matrices

● Sparse csr matrix to speed up the 

dot product



Attributes

Playlists

● Only owner_id considered with 

no success

● Playlists of URM used as 

attributes to compute

a similarity matrix 

Tracks

● Used:  artist_id,  album,  tags

● Unused:  duration,  playcount

● 77.040  total used attributes



A first approach: Top-N recommender

● First naive attempt: a non-personalized recommender system

● Count each distinct track occurrence in train_final.csv

● Select the top 5 popular tracks

● Recommend these 5 tracks for all the target playlist

MAP@5 = 0.001



Content-based recommender

● Item similarity matrix (cosine similarity)

ATTRIBUTES

ICMT
R

A
C

K
S

● Recommendation: top 5 for similarity

● MAP@5

0.01122                                    0.05524                                     0.07695                                                                                                                                  
WITH

TF-IDF
NO

TF-IDF

I

TF-IDF +
L2-NORM



Item-based collaborative filtering
TRACKS

U

P
LA

Y
LI

ST
S● User content matrix (build from URM) 

● Similarity matrix (cosine similarity)

● MAP@5 = 0.06653                                                                

U



CB + CF recommender

● Added l2 normalization everywhere

● Weighted sum of S_ICM and S_U

● Much relevant  S_ICM

● α ≃ 0.65

● MAP@5  =  0.09205

+
Ru   U 

Ru   ICMα

(1-α)

Combining predictions



SVD - Singular Value Decomposition

ICM = U S V
T

● New similarity matrix with k = 1000

latent factors and knn = 250

● Computationally expensive

● Very little improvements combining it with other recommenders

● MAP@5 = 0.04553

scipy.sparse.linalg.svds



Slim BPR - Bayesian Personalized Ranking

● Mainly based on the code on that we have seen in class

● lil_matrix to incrementally build the similarity matrix

● Added positive and negative item regularization terms

● Added knn = 500

● Positive interactions = number of non-zeros

● MAP@5 = 0.04954

● learning rate = 0.01
● epochs = 1
● positive_reg = 1.0
● negative_reg = 1.0



Round robin & Ranking average

● Combines recommendation of:  content-based, item-based collaborative 
filtering and SLIM

● Pick tracks according to their ranking

● MAP@5: no improvements

Round robin

● Tested in 3 different modes:

“Standard”, “Jump”, “Mono”

Ranking average

● Compute the ranking average for 
each track and pick the top 5 
according to this value



Hybrid Recommender (best solution) 

+
Ru   SLIM 

Ru   AVGα

(1-α)

+

avg (1 - avg)

S_ICM S_U

● Merging models + combining predictions

● Apply tf-idf on the transpose of URM

● Merge similarity matrices

● Combine prediction with Slim BPR

● avg = 0.74      α = 0.20

● MAP@5 = 0.10205



Summary



Testing

● Training set:   80 %

● Test set:   20%

● Playlist with at least 10 tracks for the test set

● Hyperparameters tuning                        iterative search with
descending granularity



Thank you for your attention.

Recommender System Challenge 2017

Tommaso Scarlatti


