
Improving Domain-specific 
Transfer Learning Applications 

for Image Recognition 
and Differential Equations

M.Sc. Thesis in Computer Science and Engineering

Candidates: Alessandro Saverio Paticchio, Tommaso Scarlatti

Advisor: Prof. Marco Brambilla – Politecnico di Milano
Co-advisor: Prof. Pavlos Protopapas – Harvard University



Agenda

INTRODUCTION IMAGE RECOGNITION DIFFERENTIAL EQUATIONS CONCLUSIONS

𝝏𝒛
𝝏𝒕



Agenda

INTRODUCTION IMAGE RECOGNITION DIFFERENTIAL EQUATIONS CONCLUSIONS

𝝏𝒛
𝝏𝒕



Context

Deep neural networks have become an indispensable tool for a wide range of 
applications.

They are extremely data hungry models and often require a lot of computational 
resources.

Transfer Learning!

Can we reduce the training time?



Transfer Learning

A typical approach is using a pre-trained model as a starting point. 
[S. Pan and Q. Yang – 2010]

Image source: https://towardsdatascience.com/a-comprehensive-hands-on-guide-to-transfer-learning-with-real-world-applications-in-deep-learning-212bf3b2f27a



Neural Networks Finetuning

• Use the weights of the pre-trained
model as a starting point

• Many different variations depending
on the architectures

• Layers can be frozen / finetuned



Problem statement

• Can we find smarter techniques to transfer the knowledge already acquired? 

• Can we find a way to reduce further the computational footprint? 

• Can we improve the convergence and the final error of our target model?

Proposed solution - Explore transfer learning techniques in two different scenarios:

• Image recognition

• Resolution of differential equations
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Image Recognition - Problem setting

It’s a supervised classification problem: 

The model learns mapping from features 𝑥 to a label 𝑦.

We analysed the problem of covariate shift [Moreno-Torres et al. – 2012], which can 
harm the performance of the target model:

𝑃! 𝑦 𝑥 = 𝑃" 𝑦 𝑥
𝑃! 𝑥 ≠ 𝑃"(𝑥)



Datasets and distortions

We used different types of datasets, shifts and architectures.

DATASETS

• CIFAR-10
• CIFAR-100
• USPS
• MNIST

SHIFTS

• Embedding Shift
• Additive White Gaussian Noise
• Gaussian Blur Samples images from the CIFAR-10 dataset



Architectures

Architecture for CIFAR-10 dataset Architecture for MNIST and USPS datasets



Presented scenarios

pretrained
on MNIST

finetuned on
USPS

pretrained
on CIFAR-10

finetuned on
CIFAR-10 with 

embedding shift



Embedding shift

• Autoencoder learns a compressed representation of the input image
called embedding;

• An additive shift is applied to each value of the embedding tensor.



Embedding shift (cont.)

• Examples of different levels of distortions applied;

• If 𝑠ℎ𝑖𝑓𝑡 = 0 we call it plain embedding shift.



Image Recognition – Problem statement

We focused on the data impact in a transfer learning setting:

can we select a subset a subsample of 𝐷! to improve finetuning?

We developed different selection criteria:

• Error-driven approach

• Differential approach

• Entropy-driven approach



Differential approach

B

pretrained network 
on source dataset

training

target dataset

validation



Differential approach – CIFAR-10

Leads to a result different from the expectations: 

good performance on the train set, worse than random selection on the validation set.

𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔 𝑠ℎ𝑖𝑓𝑡 = 2



Differential approach – USPS

Similar results are obtained on the USPS distribution.



Entropy-driven approach



Entropy-driven approach – CIFAR-10

We compare the 25% most/least entropic samples with a 25% random selection.

𝑝𝑙𝑎𝑖𝑛 𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔 𝑠ℎ𝑖𝑓𝑡



Entropy-driven approach – USPS

We compare the 50% most/least entropic samples with a 50% random selection.



Entropy-driven approach – USPS
We compare the 50% most entropic samples with a 50% random selection, this time

we recompute the subset every 5 epochs.
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We define the Ordinary Differential Equation as:

Differential Equations – Problem setting

and we know that, given a differential equation:

there are infinite solutions in the form:



If we want to find a specific solutions, we need some initial conditions, 
that defines a Cauchy Problem.

Differential Equations – Problem setting (cont.)

Given an initial condition         , our goal is to find a mapping from     to        that 
satisfies:



Find a function:

that minimizes a Loss function:

Solving DEs with Neural Networks

Network𝑡

𝑧!!

�̂� 𝑡 = 𝑧 0 + 𝑓 𝑡 𝑧!!

𝜕𝑧
𝜕𝑡

𝐿

𝑓 𝑡 = 1 − 𝑒"#



Our application: SIR model

S : susceptible people
I : infected people
R : recovered people

: infection rate
: recovery rate

Architecture for SIR model



Example - SIR 

𝑆 0 = 0.80
𝐼 0 = 0.20
𝑅 0 = 0.00

𝛽 = 0.80
𝛾 = 0.20

Network trained for 1000 epochs, reaching a final LogLoss ≅ −15.

Training size: 2000 points
Time interval: 0, 20



What if we perturb the initial conditions?

𝑆 0 = 0.70
𝐼 0 = 0.30
𝑅 0 = 0.00

𝛽 = 0.80
𝛾 = 0.20

LogLoss ≅ −1.39

Problem statement: (How) Can we leverage Transfer Learning to re-gain performance?



Fine-tuning results

𝑆 0 = 0.80 → 0.70
𝐼 0 = 0.20 → 0.30

𝑅 0 = 0.00

𝛽 = 0.80
𝛾 = 0.20



This specific architecture allows us to solve one single Cauchy problem at a time.

If we change the initial conditions, even by a small amount, we need to retrain.

Can we do more?

We focused on the architecture impact: can we make it generalize over a 
bundle of initial conditions? 



We added two additional inputs to the network: the initial conditions        . 

With this modification, we are able to learn multiple Cauchy problems all together.

Architecture modification

Network

𝑡

𝑧!!

�̂� 𝑡 = 𝑧 0 + 𝑓 𝑡 𝑧!!

𝜕𝑧
𝜕𝑡

𝐿
𝑧(0)



Bundle of initial conditions - Results
Training bundle
𝐼 0 ∈ [0.10, 0.20]

𝑅 0 ∈ [0.10, 0.20]

𝑆 0 = 1 − (𝐼 0 + 𝑅 0 )

𝛽 = 0.80

𝛾 = 0.20𝑰 𝟎 = 𝟎. 𝟏𝟎, 𝑹 𝟎 = 𝟎. 𝟏𝟎 𝑰 𝟎 = 𝟎. 𝟐𝟎, 𝑹 𝟎 = 𝟎. 𝟏𝟓



Bundle perturbation and finetuning results

Training bundle
𝑆 0 = 1 − (𝐼 0 + 𝑅 0 )

𝐼 0 ∈ 0.10, 0.20 → [0.30 0.40]

𝑅 0 ∈ 0.10, 0.20 → [0.30, 0.40]

𝛽 = 0.80

𝛾 = 0.20



Finetuning improvements
R(
0)

I(0)

R(
0)

I(0)

R(
0)

I(0)

R(
0)

I(0)

point to point

bundle to bundle



We gave the network full flexibility by adding as input the parameters 𝜃.

One more input: the parameters

Network

𝑡 𝑧!!

�̂� 𝑡 = 𝑧 0 + 𝑓 𝑡 𝑧!!

𝜕𝑧
𝜕𝑡

𝐿𝑧(0)

𝜃

Architecture for SIR model



Bundle perturbation and finetuning results

Training bundle

𝑆 0 = 1 − (𝐼 0 + 𝑅 0 )

𝐼 0 ∈ 0.20, 0.40 → [0.30, 0.50]

𝑅 0 ∈ 0.10, 0.30 → [0.20, 0.40]

𝛽 ∈ 0.40, 0.80 → [0.60, 1.0]

𝛾 ∈ 0.30, 0.70 → [0.50, 1.0]



Loss trend inside/outside the bundle

Training bundle
𝑆 0 = 1 − (𝐼 0 + 𝑅(0)

𝐼 0 ∈ [0.20, 0.40]

𝑅 0 ∈ [0.10, 0.30]

𝛽 ∈ [0.40, 0.80]

𝛾 ∈ [0.30, 0.70]

Color represents the LogLoss of the network for a solution generated for that particular combination
of (𝐼 0 , 𝑅 0 ) or (𝛽, 𝛾)



How far can Transfer Learning go?
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Conclusions and Future Works

• Analysis on data impact and architecture impact

• Data-selection methods are sometimes hard to generalize

• Giving the network more flexibility helps transfer

• It would be appropriate to continue the research in the field of uncertainty sampling

• How does each bundle perturbation affects the network?
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