
Guglielmo Menchetti
Lorenzo Norcini

Tommaso Scarlatti

SOFTWARE ENGINEERING 2

OVERVIEW
1. Requirements Analysis

2. System Design

3. Implementation

4. Testing

5. Demo Video  
 

PURPOSE
• Travlendar+ is a calendar based application to help users

organise their appointments taking into account their
preferences and providing appropriate mobility solutions.

• Main goals and functionalities
- Manage events (standard, flexible, recurrent)

- Guarantee schedule feasibility

- Provide mobility solutions according to preferences

- Offer booking functionalities

REQUIREMENTS
ANALYSIS

GOALS (8)
• [G.1] Access from different platforms

• [G.2] Manage meetings

• [G.3] Reach every meeting on time

• [G.4] Select or edit a travel mean to reach an event

• [G.5] Set preferences

• [G.6] Create flexible events and recurrent events

• [G.7] Book transportation for a trip

• [G.8] Be notified before the occurrence of an event

CONSTRAINTS AND DEPENDENCIES
• Location: Milan

• Platform: compatible OS or browser

• Connection: Internet connection

• External services: third-party APIs

- Travel options

- Booking

• Persistent data: a DBMS to store/retrieve data

DOMAIN ASSUMPTIONS (12)
• Data correctness

- [D.3] Events informations provided by the user are correct

• Network resiliency

- [D.1] The sent email is assumed to be correctly received

• Travel availability

- [D.9] All selected travel means specified in the preferences are available

• Booking service

- [D.11] User is registered to the service which offers the booking option.

WORLD AND MACHINE PARADIGM

Transport delay
API queries

Feasibility study

System clock

DBMS

Registration/login

Menage events

Set preferences

Suggest travel options

Generate warnings

Send notifications

Shared phenomena
Machine phenomena
World phenomena

Unscheduled  
appointments

Unexpected 
issues

USE CASE DIAGRAM

FUNCTIONAL REQUIREMENTS (29)
• User registration/login

- [R.4] Allow the User to log in using his/her personal credentials

• Event management

- [R.7] The User must be allowed to create events, specifying…

- [R.11] Check if the event created or edited by the User is feasible.

• User preferences/constraints

- [R.18] User can define specific constraint for each travel means, that are…

• Third party APIs

- [R.27] Provide interface for third party services allowing the User to authenticate

• Notifications

- [R.28] Allow to activate notifications and setting their time

ALLOY MODEL

- Users: 1
- Schedules: 3
- Events: 6
- Travels: 3
- Booking: 1

MOCKUPS

• Application prototyping platform: Proto.io

SYSTEM
DESIGN

SYSTEM ARCHITECTURE
• Multitier Architecture

- Presentation Tier: interface the User interacts with

- Web Tier: provides client side application

- Business Logic Tier: controls application’s functionality

- Data Storage Tier: used to store data

SYSTEM OVERVIEW

COMPONENT DIAGRAM

REQUIREMENTS TRACEABILITY
Component Requirements

Auth Controller

• [R.1] A Guest must be able to register. During
the registration the System will ask to provide
credentials.

• [R.2] Check if the Guest credentials are valid.

• [R.4] Allow the User to log in using credentials.

Feasibility Manager

• [R.11] The System must check if the event
created or edited by the User is feasible.

• [R.14] The System must guarantee a feasible
schedule, that is, the User is able to move from
an appointment to another in time.

. . .

• Thin Client

- Close to no computation

- Handles communications

- Easy data synchronization

- Less effort for implementation in different Clients

• Model View Controller

- Change of components  
without hassle

- I&T without fully implemented 
 components

DESIGN CHOICES AND PATTERNS

• Object-Relational Mapping

- Query and manipulate data  
using object-oriented paradigm

- More reusable and cleaner code

• RESTful

- Data exchange through HTTP protocol

- Stateless: requests contain all the necessary information

- Uniform Interface: enhance scalability

DESIGN CHOICES AND PATTERNS

UX DIAGRAM

• User flow: path the
user follows through
the application

IMPLEMENTATION  
DETAILS

DATABASE SCHEMA

• DBMS: Relational DBMS (PostgreSQL 9.6)

BACKEND DETAILS

• Framework: Laravel 5.4

• Language: PHP 7.1

• DBMS Interface: Eloquent (ORM)

• Authentication: Passport (Token)

• APIs: RESTful

BACKEND FUNCTIONALITIES
• User

- User credentials

- Preferences

• Schedule

- Constraint Satisfaction Problem to solve feasibility

- Flexible events adjustment

- Recurrent events as single events after creation

• Travel

- Accounting for travel time

- Adapting schedule for each option

EXTERNAL SERVICES
• Travel APIs

- Google Directions: public transport, personal transport and foot

- Mapbox: bicycle

- Uber: available services

• Booking APIs

- Uber: book available service

• Mail Service

- Google Mail as mail server

FRONT END DETAILS
• Target: iOS 11

• Language: Swift 4

• Frameworks and SDKs

- JTAppleCalendar: build a calendar from scratch

- SwiftDate: manage dates and timezones in Swift

- Alamofire: make elegant HTTP requests

- UberRides: integrate Uber Rides API

FRONT END STORYBOARD

Authentication Navigation Event-related

IMPLEMENTED FUNCTIONALITIES
• [G.1] Access from different platforms

• [G.2] Manage meetings

• [G.3] Reach every meeting on time

• [G.4] Select or edit a travel mean to reach an event

• [G.5] Set preferences

• [G.6] Create flexible events and recurrent events

• [G.7] Book transportation for a trip

• [G.8] Be notified before the occurrence of an event

TESTING

TESTING OVERVIEW

• Bottom Up Approach

- Unit test of backend components

- Feature test of APIs

- Integration test of frontend  
and backend

• Testing Frameworks

- PHPUnit

- XCTest

Front End  
Integration Tests

Back End 
Unit Tests

Back End 
Feature Tests

BACKEND UNIT TESTS
Tested Components

• Booking Interface

• Maps Interface

• Constraint Satisfaction Problem
solver

• Feasibility Manager

Front End  
Integration Tests

Back End 
Unit Tests

Back End 
Feature Tests

Performed Checks

• Functions return values

BACKEND FEATURE TESTS
Tested APIs

• Authentication

• User Management

• Event Management

• Booking

• Travel

Front End  
Integration Tests

Back End 
Feature Tests

Back End 
Unit TestsPerformed Checks

• HTTP response code

• HTTP response body

• Data storage and retrieval

FRONTEND INTEGRATION TESTS
Tested Functionalities

• Authentication

• User Management

• Event Management

• Booking

• Travel

Performed Checks

• HTTP response code

• Effects of requests on the
system

Front End  
Integration Tests

Back End 
Feature Tests

Back End 
Unit Tests

DEMO
VIDEO

• SIGN UP
• CONFIRMATION EMAIL
• LOG IN
• ADD STANDARD EVENT
• ADD RECURRENT EVENT
• ADD “LUNCH” EVENT
• AUTOMATIC ADJUSTMENT
• SET PREFERENCES
• ADD EVENT WITH TRAVEL
• BOOK RIDE WITH UBER
• DELETE EVENT
• SETTINGS
• CREDITS
• LOGOUT

Guglielmo Menchetti
Lorenzo Norcini

Tommaso Scarlatti

SOFTWARE ENGINEERING 2

THANK YOU FOR YOUR ATTENTION

